For #1 - 3, evaluate the expressions.

In evaluating logarithmic expressions, it is often helpful to set the expression equal to x, and then use the "first-last-middle" rule to convert the logarithmic expression to an exponential expression, which is easier to think about. Note: the "first-last-middle" rule requires that the logarithmic or exponential portion be on the <u>left-hand side</u> of the equation.

1) log₄ 64

In the log expression, $\log_4 64 = x$, **first** is "4", **last** is "x" and **middle** is "64." We put these in the exponential expression, from left to right, to get: $4^x = 64$, then solve.

$$\log_4 64 = x$$
 converts to: $4^x = 64$ $x = 3$

- 2) $\ln e^{-2}$ (remember that: \ln is shorthand for: \log_e) $\ln e^{-2} = \log_e e^{-2} = x \qquad \text{converts to: } e^x = e^{-2} \qquad x = -2$
- 3) $\log_8 \frac{1}{64}$ $\log_8 \frac{1}{64} = x$ converts to: $8^x = \frac{1}{64}$ x = -2
- 4) Simplify: $\log_7 49 + \ln(e^{12}) \log_3 243$

$$\log_7 49 + \ln(e^{12}) - \log_3 243$$
= 2 + 12 - 5 = 9

Note: use the first-last-middle approach on each term of this expression if it helps.

For #5 - 7, write the expression in exponential form.

5) $\log_5 125 = 3$

In the log expression, $\log_5 125 = 3$, first is "5", last is "3" and middle is "125." We put these in the exponential expression, from left to right, to get: $\mathbf{5}^3 = \mathbf{125}$

6) $\log_6 \frac{1}{36} = -2$

In the log expression, $\log_6 \frac{1}{36} = -2$, **first** is "6", **last** is "-2" and **middle** is " $\frac{1}{36}$." We put these in the exponential expression, from left to right, to get: $6^{-2} = \frac{1}{36}$

7) $\log_{64} 1024 = \frac{5}{3}$

In the log expression, $\log_{64} 1024 = \frac{5}{3}$, **first** is "64", **last** is " $\frac{5}{3}$ " and **middle** is "1024." We put these in the exponential expression, from left to right, to get: $64^{5/3} = 1024$

For #8 - 9, expand the expressions.

8)
$$\log\left(\frac{3x^4}{7y^3}\right)$$

Steps to laying this out:

Step 1: write log of all of the items in parentheses in the original problem:

$$\log 3 \quad \log x \quad \log 7 \quad \log y$$

Step 2: add the exponents from the original problem as coefficients of each log:

$$\log 3$$
 4 $\log x$ $\log 7$ 3 $\log y$

Step 3: add the signs ("+" for items in the numerator; "-" for items in the denominator):

$$\log 3 + 4 \log x - \log 7 - 3 \log y$$

$$\log\left(\frac{3x^4}{7y^3}\right) = \log 3 + 4 \log x - \log 7 - 3 \log y$$

9) $\log\left(\frac{x^5y^2}{3z^4}\right)$

Steps to laying this out:

Step 1: write log of all of the items in parentheses in the original problem:

$$\log x \quad \log y \quad \log 3 \quad \log z$$

Step 2: add the exponents from the original problem as coefficients of each log:

$$5 \log x$$
 $2 \log y$ $\log 3$ $4 \log z$

Step 3: add the signs ("+" for items in the numerator; "-" for items in the denominator):

$$5 \log x + 2 \log y - \log 3 - 4 \log z$$

$$\log\left(\frac{x^{5}y^{2}}{3z^{4}}\right) = 5\log x + 2\log y - \log 3 - 4\log z$$

For #10 – 12, use the change-of-base formula to evaluate. Round to nearest thousandth.

The change of base formula is: $\log_a b = \frac{\log b}{\log a} = \frac{\ln b}{\ln a}$.

You can use either \log_{10} or \ln on your calculator to change the base. I typically use \ln because that is what is used most in the real world mathematics. \log_{10} is used in some applications, but \ln is used much more frequently.

10) $\log_{8} 5$

$$\log_8 5 = \frac{\ln 5}{\ln 8} = 0.774$$

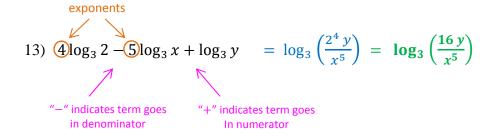
11) log₂ 6

$$\log_2 6 = \frac{\ln 6}{\ln 2} = 2.585$$

12) log₅ 7

$$\log_5 7 = \frac{\ln 7}{\ln 5} = 1.209$$

For #13 – 14, condense the expressions.



exponents

14)
$$3\log_5 4 - \log_5 x - 6\log_5 y = \log_5 \left(\frac{4^3}{xy^6}\right) = \log_5 \left(\frac{64}{xy^6}\right)$$

"-" indicates term goes in denominator

For #15-21, solve the equation. Check for extraneous solutions. Round to the nearest hundredth when necessary.

15)
$$\log_6(x-1) = 2$$

In the log expression, $\log_6(x-1)=2$, **first** is "6", **last** is "2" and **middle** is "(x-1)." We put these in the exponential expression, from left to right, to get: $6^2=x-1$, then solve.

$$\log_6(x-1) = 2$$
 converts to: $6^2 = x - 1$
 $36 = x - 1$
 $37 = x$

Check the solutions in the original equation:

$$\log_6(x-1) = 2$$

Try $x = 37$: $\log_6(37-1) = 2$
 $\log_6(36) = 2$

Solution: x = 37

16)
$$3^{0.2x} = 7$$

Original equation:
$$3^{0.2x} = 7$$

Take the
$$\log_3$$
 of both sides: $0.2x = \log_3 7$

Convert
$$\log_3 7$$
:
$$0.2x = \frac{\ln 7}{\ln 3}$$

Multiply by 5:
$$x = \frac{5 \ln 7}{\ln 3}$$

Simplify
$$x = 8.856$$

Check the solutions in the original equation:

$$3^{0.2x} = 7$$

Try
$$x = 8.856$$
: $3^{0.2 \cdot 8.856} = 7$

$$3^{1.7712} = 7$$

Solution: *x*= 8.856

17)
$$e^{0.06t} = 0.4$$

Original equation:
$$e^{0.06t} = 0.4$$

Take the
$$\ln$$
 of both sides: $0.06t = \ln 0.4$

Divide by 0.06:
$$t = \frac{\ln 0.4}{0.06}$$

Simplify
$$t = -15.272$$

Check the solutions in the original equation:

$$e^{0.06t} = 0.4$$

Try
$$t = -15.272$$
: $e^{0.06 \cdot (-15.272)} = 0.4$

$$e^{-0.91632} = 0.4$$

Solution: x = -15.272

18)
$$4^{-0.03x} + 5 = 8$$

Original equation:
$$4^{-0.03x} + 5 = 8$$

Subtract 5:
$$4^{-0.03x} = 3$$

Take the
$$\log_4$$
 of both sides: $-0.03x = \log_4 3$

Convert
$$\log_4 3$$
: $-0.03x = \frac{\ln 3}{\ln 4}$

Divide by (-0.03):
$$x = -\frac{\ln 3}{(0.03) \ln 4}$$

Simplify
$$x = -26.416$$

Check the solutions in the original equation:

$$4^{-0.03x} + 5 = 8$$

Try
$$x = -26.416$$
: $4^{-0.03 \cdot (-26.416)} + 5 = 8$

$$4^{0.79248} + 5 = 8$$

Solution: x = -26.416

19)
$$ln(x + 9) = ln(2x - 7)$$

When equal terms have the same logarithmic base (in this problem the base is e), set the objects of the logarithms equal.

Original equation: $\ln(x+9) = \ln(2x-7)$

Extract the objects of the logarithms: x + 9 = 2x - 7

Subtract x: 9 = x - 7

Add 7: 16 = x

Check the solutions in the original equation:

$$\ln(x+9) = \ln(2x-7)$$

Try
$$x = 16$$
: $\ln(16 + 9) = \ln(2 \cdot 16 - 7)$

$$ln(25) = ln(25) \qquad \checkmark$$

Solution: x = 16

20)
$$3\log_8 x - 5 = 4$$

Original equation:
$$3 \log_8 x - 5 = 4$$

Add 5:
$$3 \log_8 x = 9$$

Divide by 3:
$$\log_8 x = 3$$

Take 8 to the power of both sides:
$$8^{\log_8 x} = 8^3$$

Simplify:
$$x = 512$$

Check the solutions in the original equation:

$$3\log_8 x - 5 = 4$$

Try
$$x = 512$$
: $3 \cdot \log_8 512 - 5 = 4$

$$3 \cdot 3 - 5 = 4$$

21)
$$\log_4(3x + 16) = \log_4 x + \log_4(x + 9)$$

Original equation: $\log_4(3x+16) = \log_4 x + \log_4(x+9)$

Condense terms: $\log_4(3x+16) = \log_4[x(x+9)]$

Extract the objects of the logarithms: 3x + 16 = x(x + 9)

Simplify: $3x + 16 = x^2 + 9x$

Subtract (3x + 16): $0 = x^2 + 6x - 16$

Factor the trinomial: 0 = (x - 2)(x + 8)

Separate the factors: (x-2) = 0 and (x+8) = 0

Solve the two equations: $x = \{2, -8\}$

Check the solutions in the original equation:

$$\log_4(3x + 16) = \log_4 x + \log_4(x + 9)$$

$$\text{Try } x = 2: \ \log_4(3(2) + 16) = \log_4(2) + \log_4(2 + 9)$$

$$\log_4(22) = \log_4(2) + \log_4(11)$$

$$\log_4(22) = \log_4(2 \cdot 11) \quad \checkmark$$

$$\text{Try } x = -8: \ \log_4(3(-8) + 16) = \log_4(-8) + \log_4(-8 + 9)$$

Uh oh! You can't take a log of -8!! **X**

Problems 22-24 involve the accumulation of interest. The formulas for this are:

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$
 and $A = P \cdot e^{rt}$

where, A = the accumulated value at time t

P =the Principal invested at time t = 0

r = the interest rate on an <u>annual basis</u>

n= the number of compounding periods in a year (e.g., n=4 for quarterly compounding, n=12 for monthly compounding)

Note that as n increases, $\left(1+\frac{r}{n}\right)^{nt}$ approaches e^{rt} . That's why the second formula, $A=P\cdot e^{rt}$ is used for continuous compounding.

Shameless self-promotion: the "Algebra (Main) App" allows you to experiment with interest problems, and provides detailed solutions to problems like the ones below. It is available free at http://www.mathguy.us/PCApps.php. *Note: the app is for PCs, not for Macs or phones.*

22) A person invests \$5000 in an account that pays 1.5% interest compounded quarterly. Find the balance after 8 years.

In this problem, P = 5000, r = .015, n = 4, t = 8

$$A = 5000 \cdot \left(1 + \frac{0.015}{4}\right)^{4 \cdot 8}$$
$$= 5000 \cdot (1.00375)^{32}$$
$$= \$5,636.22$$

23) Find the value of \$1500 deposited for 5 years in an account paying 4% annual interest compounded continuously.

In this problem, P = 1500, r = .04, t = 5

Continuous compounding means we must use the $A = P \cdot e^{rt}$ formula

$$A = 1500 \cdot e^{0.04 \cdot 5}$$
$$= 1500 \cdot e^{0.2}$$
$$= $1,832.10$$

Note: You can get very close to this answer by using the formula $A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$ with a high value of n_r , such as n = 2000. Try it!

24) If \$2000 is invested at a rate of 3% compounded continuously, what amount of time would be needed to have a balance of \$2500? Use the formula $A = Pe^{rt}$.

In this problem. A = 2500. P = 2000. r = .03

Continuous compounding means we must use the $A = P \cdot e^{rt}$ formula

 $2500 = 2000 \cdot e^{0.03 t}$ Starting equation:

Divide by 2000: $1.25 = e^{0.03 t}$

Take the ln of both sides: ln 1.25 = 0.03t

 $\frac{\ln 1.25}{0.03} = t$ Divide by 0.03:

7.438 = tSimplify

Answer: approximately **7.438** years

For #25 - 26, graph the function and state the domain and range.

25)
$$f(x) = -\ln(x-4)$$

1st step: An asymptote occurs where the object of the log is zero:

$$x - 4 = 0 \longrightarrow x = 4$$

The asymptote is also useful in identifying the domain.

 2^{nd} step: Select x-values of points:

Select two points with the following properties:

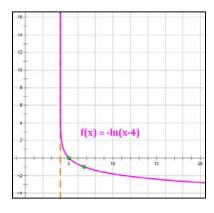
Select a point so that the object of the log is equal to 1:

$$x - 4 = 1$$
 \longrightarrow $x = 5$

Select the other point so that the object of the log is equal to the base of the log:

$$x - 4 = e \qquad \longrightarrow \qquad x = e + 4 \sim 6.718$$

So, our x-values are x = 5 and $x = e + 4 \sim 6.718$



Domain: x > 4

Range: \mathbb{R}

 3^{rd} step: Calculate y-values of points:

$$x = 5$$
: $f(x) = -\ln(5 - 4) = -\ln(1) = 0$ Point: $(5,0)$
 $x = 6.718$: $f(x) = -\ln(e + 4 - 4) = -\ln(e) = -1$ Point: $(6.718, -1)$

Point: (5,0)

^{4&}lt;sup>th</sup> step: Draw the curve based on the asymptote and the two points.

26)
$$y = \log_3(x+2) - 3$$

1st step: An asymptote occurs where the object of the log is zero:

$$x + 2 = 0 \longrightarrow x = -2$$

The asymptote is also useful in identifying the domain.

2nd step: Select *x*-values of points:

Select two points with the following properties:

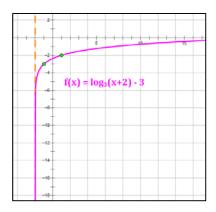
Select a point so that the object of the log is equal to 1:

$$x + 2 = 1$$
 \longrightarrow $x = -1$

Select the other point so that the object of the log is equal to the base of the log:

$$x + 2 = 3$$
 \longrightarrow $x = 1$

So, our x-values are x = -1 and x = 1



Domain: x > -2

Range: \mathbb{R}

3rd step: Calculate *y*-values of points:

$$x = -1$$
: $f(x) = \log_3(-1 + 2) - 3 = \log_3(1) - 3 = -3$ Point: $(-1, -3)$

x = 1: $f(x) = \log_3(1+2) - 3 = \log_3(3) - 3 = -2$ Point: (1, -2)

4th step: Draw the curve based on the asymptote and the two points.

27) **Simplfy:** $7^{\log_7 4}$

7 to a power and \log_7 are inverse operations, so,

$$7^{\log_7 4} = \mathbf{4}$$

exponents

28) **Condense:** $(5\log_2 3 - (3\log_2 x + \log_2 y))$

"—" indicates term goes in denominator

"+" indicates term goes In numerator

$$5\log_2 3 - 3\log_2 x + \log_2 y = \log_2 \frac{3^5 y}{x^3} = \log_2 \frac{243 y}{x^3}$$

29) **Expand:** $\ln \left(\frac{3x^4}{yz^5} \right)$

Steps to laying this out:

Step 1: write ln of all of the items in parentheses in the original problem:

$$\ln 3 \qquad \ln x \qquad \ln y \qquad \ln z$$

Step 2: add the exponents from the original problem as coefficients of each log:

$$\ln 3$$
 4 $\ln x$ $\ln y$ 5 $\ln z$

Step 3: add the signs ("+" for items in the numerator; "—" for items in the denominator):

$$\ln 3 + 4 \ln x - \ln y - 5 \ln z$$

$$\ln\left(\frac{3x^4}{yz^5}\right) = \ln 3 + 4 \ln x - \ln y - 5 \ln z$$

30) **Simplify:** $\log_4 64 - \log_3 81 + \ln(e^3)$

$$\log_4 64 - \log_3 81 + \ln(e^3)$$
= 3 - 4 + 3 = 2

Note: use the first-last-middle approach on each term of this expression if it helps.

For #31-33, solve the equation. Check for extraneous solutions. Round to the nearest hundredth when necessary.

31) $5\log_4(x-3) + 7 = 22$

Original equation: $5 \log_4(x-3) + 7 = 22$

Subtract 7: $5 \log_4(x - 3) = 15$

Divide by 5: $\log_4(x-3) = 3$

Take 4 to the power of both sides: $4^{\log_4(x-3)} = 4^3$

Simplify: x - 3 = 64

Add 3: x = 67

Check the solutions in the original equation:

$$5\log_4(x-3) + 7 = 22$$

Try
$$x = 67$$
: $5 \cdot \log_4(67 - 3) + 7 = 22$

$$5 \cdot 3 + 7 = 22$$

32)
$$e^{0.04t} + 6 = 6.43$$

Original equation:
$$e^{0.04t} + 6 = 6.43$$

Subtract 6:
$$e^{0.04t} = 0.43$$

Take the
$$\ln$$
 of both sides: $0.04t = \ln 0.43$

Divide by 0.04:
$$t = \frac{\ln 0.43}{0.04}$$

Simplify:
$$t = -21.099$$

Check the solutions in the original equation:

$$e^{0.04t} + 6 = 6.43$$

Try
$$t = -21.099$$
: $e^{0.04 \cdot (-21.099)} + 6 = 6.43$

$$e^{-0.84396} + 6 = 6.43$$

Solution: t = -21.099

33)
$$\log_5(3x + 21) = \log_5 x + \log_5(x + 7)$$

Original equation:
$$\log_5(3x + 21) = \log_5 x + \log_5(x + 7)$$

Condense terms:
$$\log_5(3x + 21) = \log_5[x(x + 7)]$$

Extract the objects of the logarithms:
$$3x + 21 = x(x + 7)$$

Simplify:
$$3x + 21 = x^2 + 7x$$

Subtract
$$(3x + 21)$$
: $0 = x^2 + 4x - 21$

Factor the trinomial:
$$0 = (x - 3)(x + 7)$$

Separate the factors:
$$(x-3) = 0$$
 and $(x+7) = 0$

Solve the two equations:
$$x = \{3, -7\}$$

Check the solutions in the original equation:

$$\log_5(3x + 21) = \log_5 x + \log_5(x + 7)$$

Try
$$x = 3$$
: $\log_5(3 \cdot 3 + 21) = \log_5 3 + \log_5(3 + 7)$

$$\log_5(30) = \log_5(3) + \log_4(10)$$

$$\log_5(30) = \log_5(3 \cdot 10) \quad \checkmark$$

Try
$$x = -7$$
: $\log_5(3(-7) + 21) = \log_5(-7) + \log_5(-7 + 7)$

Uh oh! You can't take a log of -7!! **X**

34) State the Domain and Range of the function $y = \log_4(x+4) - 2$

$$y = \log_4(x+4) - 2$$

The Domain is determined by the object of the logarithm. This also determines the location of the vertical asymptote.

$$x + 4 = 0$$
 \longrightarrow $x = -4$ is the asymptote.

Therefore,

Domain: x > -4

Range: \mathbb{R} (as it almost always is with logarithmic functions)

