Part I: Multiple Choice (no calculator)

1) If \(y = x \sin x \), then \(\frac{dy}{dx} = \)

A) \(\sin x + \cos x \)
B) \(\sin x + x \cos x \)
C) \(\sin x - x \cos x \)
D) \(x(\sin x + \cos x) \)
E) \(x(\sin x - \cos x) \)

\[y = x \sin x \]
\[
\frac{dy}{dx} = x \cdot \frac{d}{dx} \sin x + \sin x \cdot \frac{d}{dx} x
\]
\[= x \cos x + \sin x \]

Answer B

2) If \(f(x) = 7x - 3 + \ln x \), then \(f'(1) = \)

A) 4
B) 5
C) 6
D) 7
E) 8

\[f(x) = 7x - 3 + \ln x \]
\[f'(x) = 7 - 0 + \frac{1}{x} \]
\[f'(1) = 7 + \frac{1}{1} \]
\[= 8 \]

Answer E

3) The graph of function \(f \) is shown. Which of the following statements is false?

(A) \(\lim_{x \to 2} f(x) \) exists.
(B) \(\lim_{x \to -3} f(x) \) exists.
(C) \(\lim_{x \to 4} f(x) \) exists.
(D) \(\lim_{x \to 5} f(x) \) exists.
(E) The function \(f \) is continuous at \(x = 3 \).

Comments:

(A) TRUE. The limit exists because the function approaches the same value from the left and right. Note that the value of the function \(f(2) = 1 \) is different than the value of the limit \(\lim_{x \to 2} f(x) = 2 \). So, as an aside, we note that the function is not continuous at \(x = 2 \).

(B) TRUE. The limit exists because the function approaches the same value from the left and right at \(x = 3 \).

(C) FALSE. The limit does not exist because the function approaches different values from the left and right at \(x = 4 \).

(D) TRUE. The limit exists because the function approaches the same value from the left and right at \(x = 5 \).

(E) TRUE. The function is continuous because a) the function approaches the same value from the left and right at \(x = 3 \) and b) that limit is the value of the function at \(x = 3 \).
4) If \(y = (x^3 - \cos x)^5 \), then \(y' = \)
\[y' = 5(x^3 - \cos x)^4 \cdot \frac{d}{dx}(x^3 - \cos x) \]

\(= 5(x^3 - \cos x)^4 \cdot (3x^2 + \sin x) \)

\(\text{Answer E} \)

5) \(f(x) = \begin{cases} \frac{(2x+1)(x-2)}{x-2} & \text{for } x \neq 2 \\ k & \text{for } x = 2 \end{cases} \)

Let \(f \) be the function defined above. For what value of \(k \) is \(f \) continuous at \(x = 2 \)?

A) 0
B) 1
C) 2
D) 3
E) 5

To get the value of \(k \) at \(x = 2 \) for which the function is continuous, calculate the limit as \(x \to 2 \).

\[\lim_{x \to 2} f(x) = \lim_{x \to 2} \left(\frac{(2x+1)(x-2)}{x-2} \right) \]

\[= \lim_{x \to 2} (2x + 1) \]

\[= (2 \cdot 2 + 1) = 5 \]

\(\text{Answer E} \)
6) If \(f(x) = \sqrt{x^2 - 4} \) and \(g(x) = 3x - 2 \), then the derivative of \(f(g(x)) \) at \(x = 3 \) is

(A) \(\frac{7}{5} \) \hspace{1cm} (B) \(\frac{14}{\sqrt{5}} \) \hspace{1cm} (C) \(\frac{18}{\sqrt{5}} \) \hspace{1cm} (D) \(\frac{15}{\sqrt{21}} \) \hspace{1cm} (E) \(\frac{30}{\sqrt{21}} \)

Use the chain rule:

\[f'(g(x))' = f'(g(x)) \cdot g'(x) \]

First, find \(f'(g(x)) \):

\[f'(x) = \frac{d}{dx} (x^2 - 4)^{1/2} = \frac{1}{2} \cdot (x^2 - 4)^{-1/2} \cdot 2x = \frac{x}{\sqrt{x^2 - 4}} \]

\[f'(g(x)) = \frac{3x - 2}{\sqrt{(3x - 2)^2 - 4}} \]

Then, find \(g'(x) \):

\[g'(x) = \frac{d}{dx} (3x - 2) = 3 \]

Finally, substitute \(x = 3 \) into the chain rule expression for: \(f'(g(x))' = f'(g(x)) \cdot g'(x) \)

\[f'(g(x)) \bigg|_{x=3} = \frac{(3x-2)}{\sqrt{(3x-2)^2 - 4}} \cdot 3 = \frac{(3\cdot3-2)}{\sqrt{(3\cdot3-2)^2 - 4}} \cdot 3 = \frac{7}{\sqrt{45}} \cdot 3 = \frac{7}{3\sqrt{5}} \cdot 3 = \frac{7}{\sqrt{5}} \]

Answer A

7) \[\lim_{h \to 0} \frac{\ln(4 + h) - \ln(4)}{h} \]

(A) 0 \hspace{1cm} (B) \(\frac{1}{4} \) \hspace{1cm} (C) 1 \hspace{1cm} (D) \(e \) \hspace{1cm} (E) nonexistent

Notice that the expression is the definition of a derivative:

\[\lim_{h \to 0} \frac{\ln(4 + h) - \ln(4)}{h} = \left(\frac{d}{dx} \ln x \right) \bigg|_{x = 4} = \frac{1}{x} \bigg|_{x = 4} = \frac{1}{4} \]

Answer B
8) The function \(f \) is defined by \(f(x) = \frac{x}{x + 2} \). What points \((x, y)\) on the graph of \(f \) have the property that the line tangent to \(f \) at \((x, y)\) has slope of \(\frac{1}{2} \)?

Recall that the slope of the tangent line of a function at a point is equal to the derivative of the function at that point. Then,

\[
\frac{d}{dx} \left(\frac{x}{x + 2} \right) = \frac{(x + 2) \cdot 1 - x \cdot 1}{(x + 2)^2} = \frac{x + 2 - x}{(x + 2)^2} = \frac{2}{(x + 2)^2}
\]

The problem tells us that this is equal to a slope of \(\frac{1}{2} \). So,

\[
\frac{2}{(x + 2)^2} = \frac{1}{2}
\]

\[
4 = x^2 + 4x + 4
\]

\[
0 = x^2 + 4x
\]

\[
x = \{0, -4\}
\]

To get the points, substitute the \(x \)-values into \(f(x) = \frac{x}{x + 2} \) to get the points: \((0, 0), (-4, 2)\)

Answer C

9) The line \(y = 5 \) is a horizontal asymptote to the graph of which of the following functions?

\[(A) \ y = \frac{\sin(5x)}{x} \quad (B) \ y = 5x \quad (C) \ y = \frac{1}{x - 5} \quad (D) \ y = \frac{5x}{1-x} \quad (E) \ y = \frac{20x^2 - x}{1 + 4x^2}\]

Horizontal asymptotes occur at the limits as \(x \to \infty \) and as \(x \to -\infty \).

Let’s try limits as \(x \to \infty \).

\[(A) \lim_{x \to \infty} \frac{\sin(5x)}{x} = 0 \]

\[(B) \lim_{x \to \infty} 5x = \infty \]

\[(C) \lim_{x \to \infty} \frac{1}{x - 5} = 0 \]

\[(D) \lim_{x \to \infty} \frac{5x}{1-x} = \lim_{x \to \infty} \frac{5}{-1} = -5 \quad \text{using L'Hospital's Rule} \]

\[(E) \lim_{x \to \infty} \frac{20x^2 - x}{1 + 4x^2} = \frac{40x - 1}{8x} = \frac{40}{8} = 5 \quad \text{using L'Hospital's Rule} \]

Answer E
10) If \(f(x) = 16\sqrt{x} \) then \(f''(4) \) is equal to

\[f(x) = 16x^{1/2} \]
\[f'(x) = 16 \cdot \left(\frac{1}{2}x^{-1/2} \right) = 8x^{-1/2} \]
\[f''(x) = 8 \cdot \left(-\frac{1}{2}x^{-3/2} \right) = -4x^{-3/2} = \frac{-4}{x^{3/2}} \]
\[f''(4) = \frac{-4}{4^{3/2}} = \frac{-4}{8} = -\frac{1}{2} \]

Answer A

11) If \((x + 2y) \cdot \frac{dy}{dx} = 2x - y\), what is the value of \(\frac{d^2y}{dx^2} \) at the point \((3, 0)\)?

\[\frac{dy}{dx} = \frac{2x - y}{x + 2y} \]

Notice that, at the point \((3, 0)\),
\[\frac{dy}{dx} = \frac{2 \cdot 3 - 0}{3 + 2 \cdot 0} = \frac{6}{3} = 2 \]
\[\frac{d^2y}{dx^2} = \frac{(x + 2y) \cdot \frac{d}{dx}(2x - y) - (2x - y) \cdot \frac{d}{dx}(x + 2y)}{(x + 2y)^2} \]
\[= \frac{(x + 2y) \cdot \left(2 - \frac{dy}{dx} \right) - (2x - y) \cdot \left(1 + 2 \frac{dy}{dx} \right)}{(x + 2y)^2} \]

Now, substitute in \(x = 3, \ y = 0 \), \(\frac{dy}{dx} = 2 \)
\[\frac{d^2y}{dx^2} = \frac{(3 + 2 \cdot 0) \cdot (2 - 2) - (2 \cdot 3 - 0) \cdot (1 + 2 \cdot 2)}{(3 + 2 \cdot 0)^2} = \frac{3 \cdot 0 - 6 \cdot 5}{9} = -\frac{10}{3} \]

Answer A
12) \(\frac{d}{dx}[e^{\sin x}] = \)

(A) \(e^{\sin x} \) \hspace{1cm} (B) \(e^{\cos x} \) \hspace{1cm} (C) \(\cos x \) \hspace{1cm} (D) \(e^{\sin x} \cos x \) \hspace{1cm} (E) \(e^{\cos x} \sin x \)

\[
\frac{d}{dx} e^{\sin x} = e^{\sin x} \cdot \frac{d}{dx} (\sin x) \]

\[= e^{\sin x} \cdot \cos x \] \hspace{1cm} \text{Answer D}

13) If \(y = \frac{2-x}{3x+1} \), then \(\frac{dy}{dx} = \)

(A) \(-\frac{9}{(3x+1)^2} \) \hspace{1cm} (B) \(-\frac{7}{(3x+1)^2} \) \hspace{1cm} (C) \(\frac{6x-5}{(3x+1)^2} \) \hspace{1cm} (D) \(\frac{7}{(3x+1)^2} \) \hspace{1cm} (E) \(\frac{7-6x}{(3x+1)^2} \)

\[
y = \frac{2-x}{3x+1}
\]

\[
\frac{dy}{dx} = \frac{(3x+1) \cdot \frac{d}{dx} (2-x) - (2-x) \cdot \frac{d}{dx} (3x+1)}{(3x+1)^2}
\]

\[= \frac{(3x+1) \cdot (-1) - (2-x) \cdot (3)}{(3x+1)^2} = -\frac{3x-1 - 6x}{(3x+1)^2} = -\frac{7}{(3x+1)^2}
\] \hspace{1cm} \text{Answer B}

Part II: Graphing Calculator is Allowed

14) Let \(f \) be a function that is continuous on the closed interval \([2, 4]\) with \(f(2) = 10 \) and \(f(4) = 20 \). Which of the following is guaranteed by the Intermediate Value Theorem?

(A) \(f(x) = 13 \) has at least one solution in the open interval \((2, 4)\). \text{TRUE} since 13 is between 10 and 20. One way to think about it is that to get from 10 to 20, the function must go through 13. \hspace{1cm} \text{Answer A}

B) \(f(3) = 15 \) \text{FALSE}. \(f(3) \) can be anything, including values below 10 or above 20.

C) \(f \) attains a maximum on the open interval \((2, 4)\). \text{FALSE}. \(f \) may have a maximum at \(x = 4 \). For example, consider the line connecting \((2, 10)\) and \((4, 20)\). It has a maximum at \(x = 4 \), not in the open interval \((2, 4)\).

D) \(f''(x) = 5 \) has at least one solution in the open interval \((2, 4)\). \text{TRUE}, but this is not required by the Intermediate Value Theorem, which deals with the values of the function, not the values of the derivative.

E) \(f''(x) > 0 \) for all \(x \) in the open interval \((2, 4)\). \text{FALSE}. The curve could slope downward in some sub-interval between 2 and 4.

Intermediate Value Theorem: If a function, \(f \), is continuous on the interval \([a, b]\), and \(d \) is a value between \(f(a) \) and \(f(b) \), then there is a value \(c \) in \([a, b]\) such that \(f(c) = d \).
15) Let:
\[x = \text{the distance of the person from the streetlight} \]
\[y = \text{the length of the shadow} \]

A person whose height is 6 feet is walking away from the base of a streetlight along a straight path at a rate of 4 feet per second. If the height of the streetlight is 15 feet, what is the rate at which the person's shadow is lengthening?

(A) 15 ft/sec (B) 2.667 ft/sec (C) 3.75 ft/sec (D) 6 ft/sec (E) 10 ft/sec

Using the above drawing, we are looking for \(\frac{dy}{dt} \) when \(\frac{dx}{dt} = 4 \) ft/sec.

Comparing the small rectangle to the large triangle, from Geometry:
\[
\frac{15}{6} = \frac{x + y}{y} \\
15y = 6x + 6y \\
y = \frac{2}{3}x \\
\frac{dy}{dx} = \frac{2}{3}
\]

Note that:
\[
\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \\
\frac{dy}{dt} = \frac{2}{3} \times 4 = \frac{8}{3} \\
\frac{dy}{dt} = 2.667 \text{ ft/sec}
\]

Answer B

16) A particle moves along the x-axis so that its position at any time \(t \) (in seconds) is \(s(t) = 2t^2 + 3t + 5 \). The acceleration of the object at \(t = 2 \) seconds is:

(A) 19 units/s² (B) 11 units/s² (C) 16 units/s² (D) 4 units/s² (E) 0 units/s²

Acceleration is the second derivative of the position curve (the first derivative is velocity).
\[
s(t) = 2t^2 + 3t + 5 \\
\frac{ds}{dt} = 4t + 3 \\
\frac{d^2s}{dt^2} = 4
\]

Note that the acceleration is the same for all values of \(t \). So,
\[
\left. \frac{d^2s}{dt^2} \right|_{t=2} = 4 \text{ units/sec}^2
\]

Answer B
Free Response: Part I: No Calculator

17) (1981 AB) Let \(f \) be defined by \(f(x) = \begin{cases} 2x + 1, & x \leq 2 \\ \frac{1}{2}x^2 + k, & x > 2 \end{cases} \).

(A) For what value(s) of \(k \) will \(f \) be continuous at \(x = 2 \)? Justify with the definition.

(B) Find the average rate of change of the function on the interval \([1, 4]\).

(C) Find the instantaneous rate of change of the function at \(x = 4 \).

(A) **Continuity:** A function, \(f \), is continuous at \(x = c \) if:

a. \(f(c) \) is defined,

b. \(\lim_{x \to c} f(x) \) exists, and

c. \(\lim_{x \to c} f(x) = f(c) \)

In the problem given, this boils down to: \(2x + 1 = \frac{1}{2}x^2 + k \).

When \(x = 2 \):

\[
2x + 1 = \frac{1}{2}x^2 + k \quad \text{becomes:} \quad 5 = 2 + k \quad \Rightarrow \quad k = 3
\]

(B) The average rate of change is the slope of the line connecting the endpoints of the interval:

\[x = 1: \quad f(1) = 2(1) + 1 = 3 \]

\[x = 4: \quad f(4) = \frac{1}{2}(4)^2 + 3 = 11 \]

Slope \(= \frac{11 - 3}{4 - 1} = \frac{8}{3} \)

(C) The instantaneous rate of change at \(x = 4 \) is the slope of the curve at \(x = 4 \). For \(x > 2 \):

\[y = \frac{1}{2}x^2 + 3 \]

\[
\frac{dy}{dx} = x \quad \text{then,} \quad \frac{dy}{dx} \bigg|_{x=4} = 4
\]
18) Let \(f \) be the function defined by the equation \(f(x) = x^3 + 2x^2 - 6x \).

(a) Find the equations of the lines tangent and normal to the graph at the point \((2, f(2))\).
(b) Find the equation(s) of the line(s) tangent to the graph of \(f \) and parallel to the line \(y = 7x + 3 \).
(c) At what value of \(x \), if any, is the tangent line horizontal?

\[

tangent \ line: \quad y - 4 = 14(x - 2), \quad \text{using point-slope form}
\]

\[

\text{normal \ line: \quad y - 4 = -\frac{1}{14}(x - 2), \quad \text{normal \ slope \ is \ opposite \ reciprocal \ of \ tangent \ slope.}}
\]
(B) Find the equation(s) of the line(s) tangent to the graph of \(f \) and parallel to the line \(y = 7x + 3 \).

We want the points where the slope of the curve is 7
(i.e., the slope of \(y = 7x + 3 \))

\[
f'(x) = 3x^2 + 4x - 6 = 7\]

\[3x^2 + 4x - 13 = 0\]

Use the quadratic formula to determine that:

\[x = \{ 1.519, -2.852 \}\]

so the points are: \((1.519, -0.993)\)
and \((-2.852, 10.179)\)

Note: to get the \(y \)-values of the points, substitute the \(x \)-values into the original equation:

\[f(x) = x^3 + 2x^2 - 6x\]

Tangent Equation 1 (point-slope form):

\[y + 0.993 = 7(x - 1.519)\]

Tangent Equation 2 (point-slope form):

\[y - 10.179 = 7(x + 2.852)\]

(C) At what value of \(x \), if any, is the tangent line horizontal?

The tangent line is horizontal when the derivative is zero.

\[f'(x) = 3x^2 + 4x - 6 = 0\]

Using the quadratic formula,

\[x = \frac{-4 \pm \sqrt{4^2 - 4(3)(-6)}}{2 \cdot 3} = \frac{-4 \pm \sqrt{88}}{6}\]

\[x = \frac{-2 \pm \sqrt{22}}{3} = \{ -2.230, 0.897 \}\]
19) The function \(f \) is defined by \(f(x) = \sqrt{25 - x^2} \) for \(-5 \leq x \leq 5\).

(a) Find \(f'(x) \).

(b) Write an equation for the line tangent to the graph of \(f \) at \(x = -3 \).

(c) Let \(g \) be the function defined by \(g(x) = \begin{cases} f(x) & \text{for } -5 \leq x \leq -3 \\ x + 7 & \text{for } -3 < x \leq 5 \end{cases} \)

Is \(g \) continuous at \(x = -3 \)? Use the definition of continuity to explain your answer.

(a) \(f(x) = (25 - x^2)^{1/2} \)

\[f'(x) = \frac{1}{2}(25 - x^2)^{-1/2} \cdot (-2x) \]

\[f'(x) = -\frac{x}{\sqrt{25 - x^2}} \quad x \neq \pm 5 \]

(b) \(f(-3) = \sqrt{25 - (-3)^2} = 4 \)

\[f'(-3) = -\frac{-3}{\sqrt{25-(-3)^2}} = \frac{3}{4} \]

So, the tangent line has slope \(\frac{3}{4} \) and goes through the point \((-3, 4)\).

Tangent Equation is: \(y - 4 = \frac{3}{4}(x + 3) \) (using point-slope form)

(c) **Continuity:** A function, \(f \), is continuous at \(x = c \) iff:

a. \(f(c) \) is defined,

b. \(\lim_{x \to c} f(x) \) exists, and

c. \(\lim_{x \to c} f(x) = f(c) \)

\[g(-3) = f(-3) = 4 \quad \text{(from above)} \]

\[\lim_{x \to -3^-} \sqrt{25 - x^2} = 4 \quad \text{left and right limits} \]

\[\lim_{x \to -3^+} x + 7 = 4 \]

Since the limits from the left and right are the same at \(x = -3 \) and are equal to the value of \(g(-3) \), which exists, we conclude that \(g \) is continuous at \(x = -3 \).