Power Series to Memorize

Function	Kayla-Kalynda Notation	Interval of Convergence	Summation Notation	Comment
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + x^4 + \cdots$	(-1,1)	$\sum_{k=0}^{\infty} (x^k)$	
e ^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$	$(-\infty,\infty)$	$\sum_{k=0}^{\infty} \left(\frac{x^k}{k!} \right)$	
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	(-1,1]	$\sum_{k=1}^{\infty} \left[(-1)^{(k-1)} \left(\frac{x^k}{k} \right) \right]$	
cosx	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$(-\infty,\infty)$	$\sum_{k=0}^{\infty} \left[(-1)^{(k)} \left(\frac{x^{(2k)}}{(2k)!} \right) \right]$	Even function
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$(-\infty,\infty)$	$\sum_{k=1}^{\infty} \left[(-1)^{(k-1)} \left(\frac{x^{(2k-1)}}{(2k-1)!} \right) \right]$	Odd function
tan ⁻¹ x	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	[-1,1]	$\sum_{k=1}^{\infty} \left[(-1)^{(k-1)} \left(\frac{x^{(2k-1)}}{(2k-1)} \right) \right]$	Odd function

Things to notice:

- Series beginning with "1 +" have summations beginning with k = 0"; those beginning with "x +" have summations beginning with k = 1".
- e^x , $\cos x$, $\sin x$ have intervals of convergence $(-\infty, \infty)$; the others have versions of (-1, 1), with <u>different</u> endpoints included.
- The top three series contain every power of x (except x^0 for $\ln(1+x)$); the bottom three have only even or odd powers of x.

Power Series to Memorize

Function	Kayla-Kalynda Notation	Interval of Convergence	Summation Notation	Comment
$\frac{1}{1-x}$				
e ^x				
$\ln(1+x)$				
cosx				
sin x				
tan ⁻¹ x				

My thoughts: